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ABSTRACT 

In this thesis, the constrained formation of fibrous nanostructures process was scaled up 

to fabricate mechanically robust, homogenous foam samples. Scaling up this process 

required the design of a stainless steel mold capable of maintaining conditions supportive 

of the carbon nanofiber foam growth such as gas flows, constrained growth area, stable at 

the temperature and time employed. The gas flow distribution during the growth process 

was achieved using stainless steel deflectors capable of consistently directing adequate 

amounts of hydrocarbon to all chamber regions. ANSYS CFX models were used to 

simulate the gas flows with and without deflectors. Analysis of the experimental 

variables impact on the foam generation showed that the gas flows and their temperature 

had a greater influence in the foam robustness than reaction times. Control over the 

growth variables successfully created an interwoven carbon nanofiber foam material of 

larger dimensions than previous efforts. The carbon mats’ microstructures were studied 

using scanning electron microscopy and their surface area determined by the Brunauer-

Emmett-Teller method. The catalyst employed during fabrication was recovered using a 

leaching method that dissolved the palladium without damaging the carbon foam. The 

recovery experiment validated the technique as a viable way to reduce manufacturing 

costs in this process. 
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I. INTRODUCTION 

A. MOTIVATION 

The primary motivation of this research was to determine the conditions 

necessary to enable the scalability of carbon nanofiber foam (CFF) production. We aimed 

to produce a homogenous, mechanically robust sample, which dimensions were of at 

least 5 x 4 x 0.5 inches. The sample size specifications provided by the Office of Naval 

Research, were selected to meet the minimum size required to make practical its testing 

using NATO rounds. This testing would lead to a feasibility determination of whether 

CFFs could improve the performance of bulletproof personal protection systems. 

B. PERSONAL PROTECTIVE MATERIALS 

The wars in both Afghanistan and Iraq have demonstrated the importance of 

personnel and vehicle protective systems. Advances in the design of these systems have 

saved lives and resources by stopping penetrators from reaching both vital organs and 

sensitive equipment in combat zones. The trade-off for this improved protection has been 

the increased weight on soldiers and systems. For example, the interceptor body armor 

used by the U.S. Army in Afghanistan weighed more than 30 pounds, accounting for over 

30% of the soldiers’ weight-carrying limit [1]. This weight restricts the body’s freedom 

of movement while also slowing the soldier down. Both effects increase the service 

member’s susceptibility in combat. The continued objective to further the creation of 

lighter, stronger, and more durable protective systems is the ultimate aim of this research.  

The dilemma often faced in the creation of protection systems, is that 

improvements in performance often result in increased weight. A possible solution to this 

problem lies in the replacement of bulkier shock-absorbing materials with ultra-low 

density, carbon nanofiber foams. CFFs are formed from a catalyst reaction with a carbon 

source, which creates nanofibers. These fibers can range in diameter from a few to 

hundreds of nanometers (nm) in diameter. Despite their small size, these new materials 

have been shown to have incredible properties. Thus, what this thesis describes is the 
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development of a CFF mat that could be used as backing material along currently 

employed ballistic fabrics.  

C. WHY CARBON NANOFIBER FOAMS? 

Carbon nanofiber foam (CFF) has been shown to possess several unique 

properties that would be advantageous to exploit. CFF has excellent shock-absorbing 

properties. Research conducted to study the shock-dampening properties of single-walled 

carbon nanotubes (SWCNT) showed an ability to withstand fracture stresses of 6.3 MPa 

under 60% strain [2]. Other studies utilizing CFFs have created hybrid materials 

composed of CFF and epoxies. A CFF weight loading of 1% of that of the epoxies weight 

was shown to improve the Young’s modulus of the epoxy by greater than 100% [3]. 

CFFs are extremely light, having measured densities of only 0.125 g/cm3 [4], and are 

thermally stable. Thermal graphic analysis (TGA) conducted to characterize the foam has 

shown it to be stable at temperatures exceeding 550 degrees Celsius [5]. These CFF 

material properties have the potential to improve upon current ballistic protection 

materials by decreasing weight and improving shock absorption while remaining 

mechanically and thermally stable.  

D. EARLIER RESEARCH EFFORTS 

Efforts to generate three-dimensional structures using CFF material as a primary 

structural component have been attempted with varying levels of success. One such 

method created composites, formed from a combination of polymers and carbon 

nanoparticles [2]. The purpose was to create a material for use as a strain gauge. The 

composite structures had the desired electrical conductivity gained from the carbon 

nanoparticles. The composite structure also gained unwanted qualities from the polymers, 

such as increased density, and low thermal stability [6–8]. Several methods have used 

capillary forces, caused by the drying of a liquid between two structures, to cause the 

predictable formation of patterns with in strait nanotube arrays [6, 9]. Of the structures 

that have been created using the post CFF production method, none were found to be 

successful thus far in creating a mechanically robust foam structure. The process found 
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most successful in the creation of CFFs use the constrained formation of fibrous 

nanostructures process (CoFFiN) [10].  

E. THESIS OUTLINE 

This project is composed of both an experimental approach to generate the carbon 

nanofiber foam mat of 5 x 5 x 0.5 inches and a simulation that aids the understanding of 

how the gases used during the CFF growth are distributed within the mold used to 

generate it. The thesis is divided into four chapters, the present one introducing the 

subject, followed by experimental methods, results and discussion, and conclusion 

chapters. The experimental methods chapter will provide details into the experimental 

equipment and precursors used as well as the individual experimental setup and 

conditions to scale up the growth experiments. The results analysis chapter will provide a 

detailed discussion of the CFF generation process variables, the overall chemical vapor 

deposition (CVD) foam generation mechanism, foam characterization, as well as a 

summary of the variables conditions required for successful foam scalability. The 

conclusion chapter summarizes all the milestones achieved.  

1. Objectives 

The primary objective for this thesis is to create a chamber capable of containing 

CFF environmental conditions that is able support the foam generation. This objective 

will be affirmed by producing a homogenous, mechanically robust, interconnected 

throughout CFF sample large enough for potential testing as part of a ballistics target 

system. 

2. Hypotheses 

We can scale the production of CFF and manufacture homogenous, 

interconnected, and mechanically robust foam samples through the use of a modified 

CVD process.  

The variables believed to be most important to the scalability are time and flow. 

The CVD process variables will be controlled and employed inside a growth chamber. 

This chamber will constrain the growth of fibers in order to generate a CFF mat. If 
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successful, the mat will fill the entirety of the chamber while maintaining its mechanical 

robustness.  

3. Tasks 

The tasks determined necessary to investigate the thesis hypothesis are: 

• Design and manufacture a CFF chamber capable of directing gas flows 
through the system and capable of withstanding the moderate temperatures 
required for the CFF generation process. 

• Generate a homogenous, interwoven CFF mat from a catalyst in a carbon 
rich environment to validate the scaled up CFF chamber design and 
support proof of concept. 

• Conduct characterization of CFF results to ensure continuity of physical 
features.  

• Analyze experimental results and determine variable impacts. Identify 
variables critical to scaled production of CFF.  

• Identify areas where costs can be reduced or cost can be recuperated. 

4. Contributions of This Work 

CFF materials have been found to have remarkable mechanical and electrical 

characteristics [5, 11–13]. Successful attempts to generate these CFF materials have 

produced small samples capable of supporting characterization techniques and 

mechanical and electrical testing. This work expands on earlier research by increasing the 

manufacturing capability of CFF materials, which will allow for more complex physical 

testing [5]. It will also identify the critical variables that control its scalability.   
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II. EXPERIMENTAL METHODS 

The main objectives of this thesis were to determine the potential scalability of 

producing carbon nanofibers into larger foams and whether these foams will possess the 

same desired physical properties observed in previously studied smaller specimens. The 

process selected to grow the CFF was the CoFFiN method. This process has been 

successful in creating small CFF samples and involves growing CFF in a constrained 

space using a catalyst in an oxygen/ethylene environment [5]. Constraining the growth of 

the CFF within the confined chamber is important because it forces the growing fibers to 

become a single tangled interwoven mat. The experimental method chapter will discuss 

the specifics of the dimensions and rationale for the mold design to grow carbon 

nanofiber foam structures. It will also cover the CFF precursor materials used and the 

manufacturing process description. 

A. MOLD DESIGN 

The generation of a large CFF required the creation of a new mold chamber. The 

new chamber had to be at least 5 x 4 x 1 inches in order to create samples that meet the 

requirements for shock wave and ballistic testing. It was also reasoned that this increase 

in size was enough to represent meaningful scalability. Stainless steel was chosen as the 

design material because it provided good thermal resistance to support the CFF growth 

process. It also has acceptable corrosion protection while mechanically withstanding the 

temperatures needed for the growth process. Other materials considered for the chamber 

design were aluminum, ceramic oxides and tungsten. Aluminum was discarded as an 

appropriate material choice due its melting points (660.32 degrees Celsius) proximity to 

our CFF growth temperature (550 degrees Celsius). A ceramic mold was ruled out 

because of the likelihood of complications arising with controlling the hermetic 

environment and due to its brittleness. Tungsten and other metals were discarded as 

options due to their higher purchase price.  

The finalized chamber design shown in Figure 1 contains two gas flow inlets at 

one end. These inlets open into a small inlet chamber. The inlet chamber provides the 
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gases additional space to diffuse thoroughly and create a homogenous mixture prior to 

reaching the catalyst within main chamber. The inlet chamber is connected to the main 

chamber by seven small 1/8th inch connecting tunnels. These tunnels are evenly spaced 

along the length of the wall separating the main chamber from the inlet chamber. The 

gases pass through the small tunnels then flow into the main chamber. Once the gases 

pass to the far end of the main chamber, they reach another separating wall with a similar 

set of seven evenly spaced small connecting tunnels. These tubes pass into another 

separate outlet chamber. The outlet chamber has two openings that allow the exhaust 

gases to exit the mold.  

 
Figure 1.  CFF mold chamber with attached inlet and outlet connections.  

A 6 x 6 x 2-inch block of stainless steel was milled into the finalized design using 

a Hass VF-6 CNC mill capable of 5-axis rotation due to the use of its TRT-310 trunnion 

table (shown in Figure 2). The CNC machine was used to create all threaded connections, 

the gas flow inlets and outlets, the inlet and outlet chambers, and the larger main 

chamber. The gas flow tunnels that connect the chambers were created using a drill press. 
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These chambers and tunnels are identified in Figure 3. The external access holes (which 

were required to create the chambers and tunnels) were completely sealed by plugging 

the hole with 308 stainless steel welding filler material.  

 
Figure 2.   CNC machine creating the main CFF growth chamber. 

 
Figure 3.  Finalized chamber for CFF growth. The figure shows the path 

traveled by the gases through the mold. 

A lid made of the same stainless steel was used to close the mold. The lid had a 

small 0.05 inch beveled section that allowed for it to fit exactly within the main chamber. 

The lid was screwed to the mold using 28 stainless steel bolts, providing a hermetic seal.  
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Both mold inlet and outlet connections were created using Swagelok brand 1/4th 

inch fittings. The fittings were arranged to enable the connection and disconnection of 1/8 

inch stainless steel tubing. These tubes allow for the transportation of gases to and from 

the mold within the high temperatures of the furnace without the risk of damage caused 

by the high temperatures generated within the furnace. The stainless inlet tube was made 

longer than the exit tube. The inlet tube curves back and forth in order to fit within the 

confines of the furnace. The additional length also provides additional residence time for 

the transported gases to come to the desired experimental temperature prior to reaching 

the catalyst within the main chamber. 

SOLIDWORKS computer-aided design software was used to create computer 

models that were then used by ANSYS CFX fluid modeling software to model flows 

within the chamber [14]. The ANSYS CFX software was used to provide a better 

understanding of how the precursor gases would travel through the interior of the 

chamber [15]. ANSYS was also employed to validate the gas direction when using 

stainless steel deflector SIX, as explained in Chapter III. The assumptions made for the 

computer model were that the precursor gases were ideal and that the flow is laminar.  

B.  CARBON NANOFIBER PRODUCTION 

1. Experimental Setup Procedures 

The experimental setup procedures for the CFF generation can be broken into 

three categories: cleanliness/lubrication, setup/palladium placement and gas mixtures.  

a. Cleanliness/Lubrication 

Each of the individually performed experiments followed the same essential setup 

steps necessary to conduct the CFF growth properly. Cleanliness was extremely 

important due to the recycled CFF chamber components through all of the experiments. 

The CFF growth chamber, chamber lid, and deflectors were first carefully cleaned using 

a soft bristled brush and Ethanol Alcohol. The cleaned chamber components were then 

dried using compressed air. The bolts that were used to secure the lid into place were 

sonicated in a fresh water bath for (5) minutes to remove lubricants. The bolts were then 



 9 

dried using standard household paper towels. After being thoroughly dried, a thin film of 

VersaChem anti-seize thread lubricant (type-13 high temperature copper formula) was 

applied to each bolt’s threads.  

b. Setup/Palladium Placement 

The Palladium ((Pd) powder <1 µm, purity >99.9% trace metals basis) catalyst 

was measured using an Ohaus, Explorer Pro scale. The Palladium powder was distributed 

by hand within the main chamber using a thin strip of stainless steel. The powder was 

spread into small diagonal columns approximately 1/8th inch thick (with respect to the 

forward wall) within the CFF growth chamber. This was done in an effort to distribute 

the catalyst evenly throughout the entirety of the chamber in a manner that would be 

easily repeatable for all experiments. Figure 4 shows this distribution within the main 

chamber. 

 
Figure 4.  Palladium arrangement (0.5 gram) within the main mold chamber. 

The experiment’s deflector (when used) was put into place followed by the CFF 

growth chamber lid. The lid was secured with the recently lubricated bolts in a star 

pattern to create a hermetic seal between the chamber rim and lid. Stainless steel gas flow 

tubes of 1/8th inch diameter were then attached to the in/out flow gas diffusion chamber 

connections. The assembled CFF chamber components were then carefully placed inside 

a Thermo Scientific; LindBerg Blue M model BF51442C furnace shown in Figure 5 and 
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Figure 6. The gas flow tubes were navigated through the furnaces 1/2-inch by 2-inch 

window and the furnace door was closed. The furnace’s window was then sealed using a 

non-heat conductive packing material.  

 
Figure 5.  LindBerg Blue M model BF51442C furnace shown from the front 

with chamber door closed and window packing material in place. 

 
Figure 6.  Interior chamber shown with the door open from the front. 

A MKS mass flow controller (model MKS 647a), shown in Figure 7. was 

connected to the inlet 1/8th inch stainless steel gas tube via a Swagelok connection using 

via a 1/4th inch polyurethane gas tube. The outlet 1/8th inch stainless steel gas tube was 
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connected to a separate 1/4th inch polyurethane tube. This tube vented exhaust gases and 

water vapor into an erlenmeyer flask with a water reservoir containing a side exit creating 

an exhaust trap. This exhaust trap is shown in Figure 8. The exhaust gases then passed 

through the side exit into another erlenmeyer containing zeolite and permanganate to 

dilute the exhaust gases and trap unreacted ethylene prior to their release.  

 
Figure 7.  MKS mass flow controller (model MKS 647a). 

 
Figure 8.  Erlenmeyer exhaust trap utilizing zeolite and permanganate.  
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c. Gas Mixture 

A flow of pure compressed nitrogen gas of ultra high purity (UPH) running at 300 

SCCM was used to remove the air from the system. This created an inert environment 

from which to proceed with the experiment. The environment also prevented accidental 

oxidation of the palladium catalyst, which could become likely as the temperature within 

the system increased due to the rising furnace temperatures. The gas flowing into the 

system was controlled using the MKS mass flow controller. The nitrogen ran for 15 

minutes to allow the purging of the lines and chambers within the mold. After the 

nitrogen environment had been established, the furnace was switched on and set to 550 

degrees Celsius. Once the desired temperature was reached, ethylene (99.90%) and 

oxygen were added to the inlet flow of the system. The ethylene flow started at a rate of 

45 SCCM. The oxygen was started at 5 SCCM and increased every 2 minutes by 5 

SCCM until a flow of 45 SCCM was reached. This was done as a precautionary measure 

to prevent creating an exothermic reaction by adding too much oxygen to a heated fuel 

source. Gas exit flows were monitored using an external gas flow meter to monitor for 

any blockages within the mold.  

C. DESIGN SCALE UP 

1. Preliminary CFF Experiments 

The experimental process used for this thesis follows the same protocols of 

previous experimental studies conducted for the creation of carbon nanofibers [5, 16]. 

These successful preliminary experimental procedures were then modified to replicate the 

results within the newly designed larger mold chamber. The preliminary experimental 

methods are briefly reviewed below to aid in explaining the decisions made for this 

thesis. The first experiments conducted utilized a stainless steel mold with a single cavity 

of 0.35 x 1 x 2.35 inches. That mold had orifices at its two ends to allow for the 

connection of both the inlet and exhaust tubes. Palladium powder (0.02 grams) was 

spread the length of the chamber as shown in Figure 9. After sealing the chamber with a 

lid, the mold was placed inside a Lindberg Blue Mini-Mite furnace with area dimensions 

of 14 x 7.75 x 5.5 inches. The inlet was fed a gas mixture of nitrogen, oxygen and 
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ethylene using the MKS mass flow controller. Nitrogen flushed the system at a rate of 

100 SCCM for 10 minutes to create the base nitrogen environment from which the 

experiment was started. The furnace was started and set to 550 degrees Celsius. Once the 

furnace reached its desired operating temperature, oxygen and ethylene were added to the 

flow. The ethylene was started at 15 SCCM. The oxygen was started at 10 SCCM and 

increased to 15 SCCM after 5 minutes. These conditions were kept for 3 hours. After the 

3-hour period, the furnace was switched off and the ethylene and oxygen flows were 

secured and the nitrogen flow reduced to 30 SCCM for 10 minutes. Following the 10-

minute period, the nitrogen was secured and the mold sat until cool.  

 
Figure 9.  Early CFF experimental mold (dimensions of 0.5 x 0.344 x 2.25 

inches) shown with 0.02 grams of palladium distributed within the 
chamber. 

2. Modification of Scale Up Experiment Variables to Produce Larger 
Mat 

Scale up of the production process from the preliminary proof of process 

experiments required the selection of variables that we would modify or hold constant 

from earlier preliminary CFF experiments.  

a. Palladium 

The increase in the amount of palladium catalyst used from the preliminary CFF 

experiments was scaled based on the increased area between the two experimental 

chambers. The chamber floor within the preliminary mold was 1.125 in2 while that of the 

scaled chamber floor is 20 in2. It was expected that this 17.77 times increase in the area 

required a similar increase in the amount of the palladium catalyst used. Increasing the 

palladium correspondingly justified the use of 0.5 grams for all of the scale up 

experiments.  



 14 

b. Gas flow 

The increased palladium use in the scaled up experiment drove the need to 

increase the amount of ethylene and oxygen. Both gases are needed in order to create an 

environment suitable for the generation of the CFF. Both the Preliminary and scaled up 

CFF experimental flow rates are presented below in Table 1. Ethylene and oxygen flow 

rates of 45 SCCM was determined to be sufficient to provide the environmental 

conditions necessary for catalyst generation of CFF. 

Table 1.   Experimental gas flows used for experiments. 

Experiment  Gases (SCCM) 
N2 O2 Ethylene 

Preliminary Experiments 100 15 15 
Large Mold Experiments 300 45 45 

 

c. Temperature 

The temperature was to remain at 550 degrees Celsius. This is due to previous 

studies that showed growth of CFF was greatest when this temperature was maintained 

[5, 12, 13]. A discussion of the temperature, gas and radical creation are explained in 

detail in Chapter III. Since the gas flow velocity will increase in the scaled up 

experiments due to increased fluid flow through similar sized tubes, a way to ensure the 

temperature of the gases reached their optimal temperature prior to arriving at the main 

chamber needed to be developed. To ensure that the higher gas flow rates reached the 

desired temperature of 550 degrees, the inlet piping into the scaled mold required 

modification. To increase the gases residence time within the furnace, the inlet 1/8th inch 

pipe’s length was increased and several “S” type curves were formed to allow the 

increased length to fit within the furnace dimensions and is shown in Figure 10.  
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Figure 10.  Increased chamber inlet length shown attached to the scaled mold. 

3. Utilization of Gas Flow Deflectors 

The gas flow distribution path was simulated using ANSYS software [15]. The 

resulting model showed precursor gas flow paths that would reach all regions of the 

interior chamber. As shown in Figure 11 the flow velocities were highest at the inlets and 

outlets of the designed chamber. The velocities were significantly reduced prior to 

reaching the main CFF growth chamber thru the use of the inlet chamber.  

 
Figure 11.  ANSYS modeling of the mold chamber shows the flow velocities 

along within the chamber. 
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Due to the physical restraints placed on the mold design by the dimensions of the 

furnace available, the gases had to travel in a path that ran lengthwise through the main 

chamber. This caused the entry region to receive continuous gas flows while the 

palladium in the rear chamber areas was not being reached by the same gas flow. In the 

effort to mitigate this problem and control the adequate flow distribution required for 

foam generation, a series of deflectors were created to control the distribution of gas to all 

regions of the main chamber and promote fiber growth throughout the chamber. Stainless 

steel was again chosen as the material for the deflector design. In total, seven deflector 

variations were utilized in the experiments.  

a. Rod Deflector ONE 

The first deflector design, shown in Figure 12. utilized within the main chamber, 

was created from a 1/8-inch diameter stainless steel rod. The rod was bent with hand 

tools to form a cylindrical barrier and was placed in front of the main chamber gas flow 

inlets. The deflector has a single small bend at its base that kept the deflector in an 

upright position within the mold as the experiment was run. The purpose of the deflector 

was to increase the flows turbulence within the chamber as the gases passed through the 

cylinder. 

 
Figure 12.  Image showing the length of Deflector ONE.  

b. Foil Deflector ONE 

The next deflector design in the series utilized a single piece of stainless steel 

shim (Trinity Brand Industries, Inc., Part No. 6316–4) that ran the length of the main 

chamber inlets and is shown in Figure 13. The designs that follow are modifications of 

this deflector. This material was chosen to create all follow-on deflectors because its 
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material closely matched the mold material and thus had matching material properties. It 

also proved to be an easy material base to create the desired deflector shapes. This early 

deflector design forced the gas flow through open gaps left above and below the inlets.  

A chamber base was also added to the deflector design to help assist with the 

removal of CFF and to prevent damage to the foam and chamber as the foam was 

removed from the mold. The base had two forward walls that ran half the length of the 

chamber and parallel to the sidewalls of the main chamber. The rear of the deflector 

chamber base had two prongs that touched the rear sidewalls at the rear of the chamber to 

ensure the base and deflector’s position both remained constant within the mold as the 

experiment ran. This chamber base was used in all follow-on foil deflector experiments.  

 
Figure 13.  Image showing foil deflector base in position within the chamber. 

c. Foil Deflector TWO 

The second foil deflector design, shown in Figure 14. was modified from the first 

and replaced the upper gap with a cover that ran nearly the entire length of the main 

chamber. A gap was created in the rear of the covered section to distribute gas flows to 

reach the rear and center sections of the main chamber. 
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Figure 14.  Foil Deflector TWO in position within the chamber. 

d. Foil Deflector THREE 

The third deflector, shown in Figure 15. increased the gas flow reaching the 

center of the chamber through the addition of a nearly ½-inch slit in the cover. It is worth 

noting that a gap of a couple of mm existed between this cover and the lid of the 

chamber, allowing gases to reach the catalyst particles located on the base.  

 

 
Figure 15.  Foil Deflector THREE in position within the chamber. 
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e. Foil Deflector FOUR 

Deflector four, shown in Figure 16. decreased the area and gas flow available to 

the rear center section of the main chamber by replacing the 1 x 2-inch rectangular center 

cut out with (2) ½-inch slits similar to the ones added in deflector three. This deflector 

also increased the lower forward gap that has been unchanged since Foil Deflector ONE.  

 

 
Figure 16.  Foil Deflector FOUR in position within the chamber. 

f. Foil Deflector FIVE 

Deflector five, shown in Figure 17. returned to the lower forward gap dimensions 

used in Foil Deflector ONE. It also further decreased the flow to the rear center chamber 

by utilizing two single parallel slits 1/4 inch wide. Attaching a cover over the rear section 

of deflector three made these changes. 
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Figure 17.  Foil Deflector FIVE in position within the chamber. 

g. Foil Deflector SIX 

Deflector six added a small section of stainless steel foil to the rear of deflector 

five to prevent the CFF growth from blocking and clogging the gas outlets in the rear of 

the chamber. The strip was made to seat as close as possible to the chamber floor and 

provided a narrow gap that sat below the deflector cover. The strip, shown in Figure 18. 

was held in position by the chamber floor prongs that sit at the rear of the chamber. This 

provided ample gas exhaust while constraining the growth to the main chamber area.  

 
Figure 18.  Foil Deflector SIX in position within the chamber. 
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D. CATALYST RECOVERY 

The significant cost of purchasing the palladium catalyst for the production of 

CFF represents a limitation for the use of the process just described unless the catalyst 

can be recovered and recycled. The cost of a single gram of the palladium catalyst is 

$250.00. This creates a desire to find ways to reduce the amount of palladium  required to 

grow the foam or recover the spent catalyst that remains behind within the foam after the 

combustion process. Novel approaches aimed at recovering spent palladium catalyst used 

in other processes have been conducted by Sarioglan [17] Barakat et al. [18], and Jasra et 

al. [19], demonstrating potential methods that may be successful at removing and 

recovering the valuable palladium without damaging the newly created materials and are 

discussed in further detail in Chapter III. To demonstrate the ability to extract the 

palladium from the CFF, an experiment was devised using the Sarioglan recovery method 

referenced. The experiment sought to remove palladium via a leaching reaction using an 

acidic solution and a moderate temperature. Two different solutions were created to 

compare the amount of palladium recovered from foam samples. The first solution 

(solution 1) was an aqueous solution composed of 10% hydrochloric acid. The second 

solution (solution 2) was an aqueous solution composed of 10% hydrochloric acid and 

5% hydrogen peroxide. Each solution was measured, and placed into separate clear Pyrex 

measuring containers. Using a Corning PC-220 hot plate, the solutions were brought to a 

temperature of 60 degrees Celsius. Two samples were cut from Foil Deflector ONE’s 

CFF experiment. Each sample was taken from good foam created in the forward region 

of the main mold chamber. The samples were cut into similar sized cylindrical shapes 

using a razor. The samples were then weighed and measurements were recorded. When 

the solutions reached the desired temperature, each sample was placed within a solution 

container and was held submerged using silica glass. The samples remained submerged at 

a constant temperature for 90 minutes then were removed from the solution. The samples 

were then placed into the CFF main mold chamber and the chamber sealed. The mold 

was placed inside the furnace and connected to the MKS mass flow controller. Nitrogen 

was run through the mold at 100 SCCM to provide a nonreactive environment. The 

furnace dried at 550 degrees for 3 hours. Upon removal from the chamber, the samples 
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were cut so that a cross-sectional area of the center and outer surface were viewable. 

These sample cuts were attached to the SEM sample pedestals using a conductive liquid 

silver solution then placed into a vacuum of 30 PSI. 

E. CHARACTERIZATION METHODS 

1. Scanning Electron Microscopy (SEM) and Back-Scattered Electron 
Signal (BSE) 

Carbon Nano-Fiber SEM and BSE characterization were completed using a Zeiss 

Neon 40 electron microscope, shown in Figure 19. Images taken at 1k, 5k and 15k times 

magnification utilized extra high tension (EHT) of 20 kV and were taken using a working 

distance between 5~10 mm. 

Samples were taken from each of the completed CFF experiments for comparison. 

Comparison samples were taken from forward regions near inlet, where the foam 

produced was of desired production quality. Sample specimens were attached to 

individual pedestals using a conductive liquid silver solution and were placed in a 

vacuum of 30 PSI.  

 
Figure 19.  Zeiss Neon 40 electron microscope. 
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2. Brunauer-Emmett-Teller (BET) Characterization 

BET analysis of the fibers surface area was conducted using a Nova 4200e 

Surface area and Pore Size Analyzer, shown in Figure 20. The results were obtained 

using nitrogen as the systems working adsorbent. The results were displayed using Nova 

software.  

Each sample was cut, weighed and then placed into a thin glass tube cell. Each 

sample’s surface cleaning was conducted using a degassing procedure. Samples in their 

cells were placed the Nova 4200e and were heated to 100 degrees Celsius for 30 minutes 

before raising the temperature to 200 degrees for an additional 120 minutes. After the 

degassing process, the cells were placed in a liquid nitrogen bath and small amounts of 

nitrogen were allowed to adsorbate onto the sample surface so that an accurate 

calculation of the surface area could be determined. 

 

 

Figure 20.  Nova 4200e. 
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III. RESULTS AND DISCUSSION 

The results obtained from the experiments showed a steady progression toward 

the ultimate goal of modifying variable conditions to create a single, solid, interwoven 

mat of CFF. Conditions were selected based on results from earlier CFF research and 

then tailored to meet the scalability desired for this body of work. This chapter will begin 

with a discussion of the principles of fiber growth followed by the experiment results and 

analysis. The results of this thesis are summarized below in the order that the experiments 

were carried out.  

A. FIBER GROWTH 

In order to understand the challenges faced to scale up the production of the 

carbon nanofiber foams, central task of this thesis, a few basic concepts need to be 

reviewed regarding the structure and conditions of growth during the fabrication process: 

The element carbon can be found as diverse allotropic forms, each with a different 

structure, some of the most common are diamond, graphite, fullerenes and carbon 

nanotubes (CNT). The structural differences between those can be related to the way that 

carbon bonds, since this element can be linked to 2, 3 or 4 other atoms due to its 

electronic configuration, 1s22s22p2. In order to equalize the energy differences between 

the orbitals the 4 electrons in the outer shell can combine to form 3 types of hybrids. The 

sp3 orbitals acquire a tetragonal arrangement, that is, form a tridimensional structure like 

the ones found in diamond or CH4 (methane). The sp2 orbitals are trigonal and planar and 

are typical of graphite and H2C=CH2 (ethylene). The sp1 orbitals are linear and found in 

HC≡CH (acetylene) [20].  

Graphite consists of separated layers of carbon atoms that are sp2 hybridized. 

Such structure has electrons (one for each carbon atom) that form a π-electron system, 

that is, a charge cloud that is shared by all carbon atoms. In graphite that cloud exists in 

both sides of the layered structure, with no primary bonds in between layers, the only 

force keeping them together being a Van der Waals interaction. The layers in the 

structure can easily slide one past another. 
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Carbon nanotubes share the properties described above for graphite, since they 

can be described as a rolled up single sheet of graphite, also named Single-wall carbon 

nanotube (SWCNT). When more than a tube is nested in others in a concentrical 

arrangement we called them Multi-wall carbon nanotubes (MWCNT). The diameter of 

CNT is in the order of 0.4 nm to a few nm, however, their length can reach mm [10, 21].  

In this thesis, the materials generated are referred as Carbon nanofibers foam 

(CFF) and it is worth mentioning that despite having, in many cases, the same diameters 

that MWCNT present, they do not share the same structure. The former are cylindrical 

structures with no empty space inside (they are fiber based), while the MWCNT present 

always a tubular structure to differentiate them from the so-called  carbon nanofoams. 

The name carbon nanofoam has been given to a magnetic carbon substance made 

by focusing a laser ablation system into graphite in a chamber filled with argon gas. 

During such process, the high temperatures achieved (18,000 C) by the system evaporate 

the graphite into single carbon atoms that later condenses into clusters as the vapor is 

cooled. The large-scale structure of a carbon nanofoam is composed of sp2 and sp3 

bonded carbon atoms, has ferromagnetic behavior and is extremely lightweight [22] (See 

Figure 21).  

In contrast, the foams described herein, previously introduced by our team [16], 

are made up by bundles of carbon nanofibers, also known as vapor grown carbon fibers. 

The vapor growth process is described with more detail in the next paragraphs. The 

nanofibers present diameters in the range of a few nm to about 300 nm and intertwine 

among themselves (see Figure 21) forming a highly porous arrangement which 

tridimensional form resembles foam. 

The word foam has been traditionally used to describe a substance that is made by 

trapping pockets of gas in a liquid or solid and neither the nanofoams nor the nanofiber 

foams structures just described adjust to such definition. An example of a polymeric 

polyurethane foam structure from Pierson [20] is presented in Figure 21.  
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Figure 21.  The carbon nanofoam shown in image a, has carbon structures ranging from 1–10 

nm in diameter. These structures appear to be assembled in a highly chaotic and 
unorganized formation. The carbon nanofibers shown in image b have structures 

ranging from 100 - 300 nm in diameter. The individual fibers shown in this image 
all have the typical symmetric cylindrical appearance. The carbon structure shown 

in image c on the other hand is the largest of the three image structures. The 
diameters of these structures are measured in microns which is several orders of 

magnitude larger than the structures seen in image a and b, from [16, 20, 22] 

B. CONSTRAINED FORMATION OF FIBROUS NANOSTRUCTURES 

The constrained formation of fibrous nanostructures (CoFFiN) process used in the 

generation of CFF is a modification of the chemical vapor deposition (CVD) process. 

CVD typically uses a low temperature [500-1200° C] thermal decomposition of a carbon 

rich vapor to create carbon structures. This low temperature thermal decomposition, also 

called catalytic pyrolysis, is achieved by using a metal catalyst [8]. This process starts 

when a hydrocarbon rich gas is passed to a heated vessel that contains a catalyst. This 

vessel must be kept at a sufficiently high temperature to allow for the thermal 

decomposition of the gas into a nanostructure by the catalyst. The CVD variables that 

impact the gas decomposition, which ultimately facilitates the growth of CFF 

nanostructures, are the gas precursors, gas flows, choice of catalyst, and temperature. The 

primary difference between the CoFFiN and CVD method is that CVD does not constrain 

the area available for the growth of the carbon structures. CVD allows the chemical 

reaction to dominate the physical form of the carbon nanostructure product being 

generated. The CoFFiN method, on the other hand, restricts the area available for the 

growth of nanostructures. This is significant because limiting the growth region creates 
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an additional substantial variable through which we can improve the characteristics of the 

CFF products being generated. The addition of the growth restriction has a direct impact 

on the gas decomposition because it impacts the CVD variables specifically the gas flow. 

1. Precursors Gases 

Precursors control the morphology of the CFF structure materials being 

generated. This physical impact to the structures is caused by the thermal breakdown of 

the molecular structure of the gas. For example, methane’s molecular structure generally 

produces straight CNTs while fullerene’s molecular structure produces curved CNT’s 

[23, 24]. The most highly used carbon precursors for CVD are acetylene, benzene, carbon 

monoxide, cyclohexane, and fullerene, ethanol, ethylene, and methane [8]. In some cases, 

oxygen is added to the precursor mixture. This is occasionally due to a catalyst’s oxide 

being able to create greater catalytic activity than the pure catalyst alone [25]. 

2. Catalysts 

The most common CVD catalysts have two basic qualities that make them 

preferable for use. First, a high capacity to dissolve carbon at high temperature allows the 

catalyst to extract a greater amount of carbon from the precursor. Second, a high carbon 

diffusion rate allows the efficient formation of the carbon structure. The commonly used 

catalysts for generation of CFF’s are Ag, Au, Co, Cu, Fe, Ni, Pd., and Pt. [8]. Catalysts 

play an important role in the enablement of the hydrocarbon decomposition as well as the 

physical size of the CFF materials being generated. Catalyst particle sizes typically are 

required to be on the nanometer scale to allow for the precursors low temperature 

decomposition. Another important role the catalyst serves during the growth of carbon 

nanostructures is preventing formation of a carbon cap, which can form due to dangling 

carbon bonds. The formation of the cap prevents the catalysts decomposition of the 

hydrocarbon gas. This formation ultimately ceases the growth process by encapsulating 

the catalyst in the structure and precludes the further growth. The catalyst’s adhesion to 

the nanostructure’s dangling carbon bonds must be greater than the energy gained from 

the formation of the carbon cap to prevent this formation. Co, Fe and Ni, and are well 

suited for use in the formation of CNT’s due to their high catalyst adhesion. Au, Co, Cu, 
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and Pd all have weaker adhesion properties. This makes them better suited for the 

formation of carbon nanofibers [26]. 

3. Temperature 

Temperature impacts the CFF structure material’s rate of growth in the CVD 

process. This rate of growth is also highly dependent on the choice of catalyst used in the 

process. Previous research conducted using Pd as a catalyst with an ethylene precursor 

showed that highest growth rates were achieved using ~550°C [5]. 

C. GROWTH MODEL THEORY 

The vapor-liquid-solid (VLS) growth model offers the best theory for the actual 

physical mechanics for the growth of carbon nanostructures from a catalyst and 

hydrocarbon gas mixture [8, 27]. When the hydrocarbon gas arrives at the heated catalyst 

nanoparticle, the gas decomposes into both carbon and hydrogen species due to a 

chemical reaction. The carbon is absorbed into the catalyst while the hydrogen remains 

behind as exhaust vapor. Once the catalyst nanoparticle reaches its carbon solubility 

limit, a three-phase state is reached, where a solid; liquid and gas are all present within 

the catalyst’s activity [28]. The carbon precipitates out of the catalyst and crystallizes, 

forming the base of the CFF nanostructure material. The direction of the carbon growth 

will be determined by the interaction of the catalyst and the substrate. The catalyst’s 

interaction with its substrate will determine the direction of the carbon growth [29]. If the 

interaction is weak and an acute contact angle is formed between the catalyst and the 

substrate, the carbon will precipitate at the catalyst’s bottom and force the catalyst to lift 

off the substrate, this is called the “tip growth” model [8]. If there is a strong interaction 

between the catalyst and the substrate and an obtuse contact angle is formed, the carbon 

will precipitate farthest from the substrate and the CFF structure will form out the top of 

the catalyst, this process is called the “base growth” model [8]. This process will continue 

so long as the conditions for hydrocarbon decomposition remain achievable. Figure 22 

shows the growth mechanics explained in detail above. 
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Figure 22.  Depictions of the “tip-growth” (a) and “base growth” (b) models 

showing the vapor-liquid-solid growth process, from [8]. 

D. CATALYST RECOVERY DISCUSSION 

The value of the metal catalysts used in the CFF production process requires the 

development of a method that is capable of recovering and reusing the spent catalyst 

without damaging the newly created CFF material. Since CFF generation requires the use 

of catalysts, such a process is economically desirable. Incineration is a method that is 

typically used to recover metal catalysts but this technique oxidizes palladium, thus 

requiring further reduction steps [17]. Sarioglan states that two hydrometallurgical 

methods have been used for the recovery of palladium-spent catalyst [17]. The first 

technique dissolves the suspending material containing the palladium-spent catalyst using 

chemical reagents. This method would not be suitable as a recovery method for CFF 

production since it would destroy the CFF material. The second method is a leaching 

method, which dissolves the palladium rather than the suspending material by using a 

hydrochloric acid solution or acidic oxidant solutions composed of chloride salts and 

nitric acid [17]. The palladium is then dissolved and then separated from the solution by 
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reduction [18]. This second method leaves the suspending structure intact, which makes 

its potential use as a catalyst recovery method for CFF promising.  

E. FOAM ANALYSIS 

1. Preliminary CFF Experiment  

Several early CFF experiments conducted utilizing the smaller CFF growth 

chamber were conducted to demonstrate an ability to create CFF of desirable quality. The 

foam created using the palladium catalyst appeared consistent throughout the mold 

chamber as shown in Figure 23. The mold chamber was completely filled with foam. The 

foam was dense yet flexible and did not crumble under when mildly compressed under 

the pressure applied via a spatula. Figure 24. shows that the foam could be removed 

mostly intact. Unfortunately tearing occurred where the foam had adhered to the surface 

of the chamber walls, which made it necessary to scrape the chamber walls to remove the 

remaining foam fragments. 

 
Figure 23.  Preliminary CFF Experiment prior to its removal from the chamber. 

 
Figure 24.  Image of foam after removal from the chamber. 

The foam was then characterized using the Zeiss SEM. Images revealed the 

diameter sizes of the fibers generated during the experiment and are seen in Figure 26. 

The SEM images were then analyzed using the image analysis software Image-J [30]. A 
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diameter size distribution was generated in order to create a reference that would be used 

to compare the scaled experiment foam results against. The diameter size distributions 

are plotted in Figure 25. The fiber diameters were found to be between 8nm and 44nm, 

with a bimodal distribution; most fibers having an average diameter between 16nm and 

20nm. The size of the fibers has been attributed to the catalyst particle dimension [27]. 

BSE was used to show that the spent palladium catalyst remained within the CFF itself. 

 
Figure 25.  CFF diameter size distribution of the preliminary experimental 

results used as a comparison against other experimental results. 

 
Figure 26.  SEM and BSE taken of foam at 7.5K magnification. The bright 

regions show the palladium the remains within the foam after 
growth. 



 33 

2. CFF Experiment: Without Deflector 

The results of the first scaled up CFF experiment utilizing the larger mold 

chamber in combination with the increased gas flows and increase palladium amount, 

produced foam that was nonhomogeneous throughout its entirety. This experiment did 

not utilize a deflector or the serpentine inlet. As shown in Figure 27. the inlet region of 

foam showed deep grooves in the surface that lined up squarely with the inlets from the 

forward gas chamber. The groves appeared to be created by the gas flows velocity into 

the primary chamber. The texture of the foam located in the forward one third of the 

chamber felt consistent with the preliminary CFF experimental foam. The quality of the 

foams texture deteriorated past this point. Near the mid-span section of the chamber, the 

foam began to no longer bond with the forward section of foam and produced individual 

thin foam flakes. The rear of the chamber was nearly void of foam except for a few small 

foam flakes that appeared to grow along the sides of the chamber walls. Despite the poor 

consistency throughout the mold observed, the SEM results (Figure 28) show the foam 

fibers that were created are of similar diameter size distribution as those found in the 

preliminary foam experiments seen in Figure 25.   

Experiment values: 
• Initial palladium weight: 0.68 grams 

• Final foam weight: 16.02 grams 

• Foam surface area: 42.2 m2/g (results from BET analysis) 

• The total weight of the foam grown was 16.02 grams.  
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Figure 27.  Scaled CFF experiment images showing the results after opening the 

main chamber. 

 
Figure 28.  Left image shows an SEM image taken of the foam experiment that 

utilized no deflector. Right image is a BSE image taken of the same 
experimental results.  

After the experiment conducted with no deflector just described, all experiments 

implemented the use of the longer serpentine inlet because it was believed that the lack of 

growth was a consequence of gases not reaching the growth temperature required. The 

use of the specific temperatures selected for the fibers growth and the need of a winding 

curve (serpentine) to introduce the reactive gases into the mold (shown in Figure 10) 
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could be explained by reviewing some fundamental concepts, such as pyrolysis and free 

radicals.  

At high temperatures, in the presence of sufficient amounts of an oxidant, a 

hydrocarbon will generate gaseous CO2 and H2O, forming no solid byproducts. However, 

in the absence of an oxygen, organic materials will decompose in a process known as 

pyrolysis, leaving carbon as end product. Other elements present in the original 

hydrocarbon will form gaseous byproducts and diffuse away. 

Many of the forms of carbon of technological interest are formed by pyrolysis, 

including highly oriented pyrolytic graphite (HOPG), carbon fibers, carbon nanotubes, 

glassy and amorphous carbon. The growth of carbon nanotubes and nanofibers requires a 

high level of control during the pyrolysis process for hydrocarbon molecules to react with 

the catalyst, otherwise the carbon will not grow in a controlled manner and will just 

deposit as amorphous carbon. 

The activation of the ethylene molecule by heating creates free radicals that 

facilitate the pyrolysis. In the chemistry, a free radical refers to an atom, molecule or ion 

that has unpaired electrons. Free radicals are electron-deficient species, but they are 

usually uncharged, so their chemistry is very different from the chemistry of even-

electron or electron-deficient species. The unpaired electrons make the radicals highly 

reactive.  The most important radical reactions are: formation, propagation and 

termination. 

The reason why the temperature should be high during the nanofiber growth 

process is because the kinetic energy of the gas increases with temperature as well as the 

amount of radicals formed. Therefore, the serpentine shown in Figure 10 was used to 

force the reactive gases to heat to the reaction temperature (550 degrees C) before 

reaching the mold and assure the breakage of the ethylene molecule and allow the 

radicals to interact with catalyst particles. Moreover, the growth process is conducted at a 

constant flow of the reactant gas mixtures (controlled by the MFC system) to remove the 

unwanted byproducts. Such constant flow also avoids the generation of carbon clusters or 
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independent nuclei and favors the incorporation of carbon to the already growing 

nanofiber substrate. 

The use of nitrogen gas during the growth step is meant to dilute the ethylene to 

prevent superstauration conditions and direct the growth to only the catalytic sites rather 

than forming new nuclei. 

3. CFF Experiment: Rod Deflector ONE 

The solidification of the foam generated using the stainless steel rod deflector 

improved slightly over the no deflector experiment. The deep grooves that had formed 

previously were not as prominent as seen in Figure 29. The size of the grooves had been 

reduced forming only small ridges in the vicinity of the gas inlets. The length of the 

forward solid foam section had grown to reach nearly half the length of the chamber. The 

small flakes were still present but now occupied the entirety of the rear region chamber 

floor.  

Experiment values: 
• Initial palladium weight: 0.5 grams 

• Final foam weight: 19.12 grams 

• Foam surface area: 163.2 m2/g  

 
Figure 29.  Left image shows foam after removal from the main chamber. Right 

image shows and (right) a comparison between the non-deflected 
(A) and deflected (B) experiments. 
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SEM images taken of a sample from the forward region’s good foam showed the 

fibers ranged in diameter from 10 nm to approximately 36 nm as seen in Figure 30. BSE 

images of the foam sample showed light Palladium deposits remained within the 

generated foam. SEM and BSE results show that the fibers created were similar to the 

foam fibers generated during the preliminary experiments. 

  
Figure 30.  Left image shows an SEM image taken of the foam from Rod 

Deflector ONE experiment. Right image is a BSE image taken of the 
same experimental results.  

4. CFF Experiment: Foil Deflector ONE 

The use of stainless steel deflector-one resulted in the first scaled experiment to create 

solid foam growth spanning the chamber length to the far end. The foam in the forward 

section of the chamber, near the gas inlets showed cavity formation, which was attributed to 

the inlet gas’s velocity continuing to impact forward foam generation. Dispersion of the foam 

growth was not symmetric within the chamber. As shown in Figure 31. foam along the right 

half of the chamber formed along the entirety of the chamber length while that on the left side 

of the chamber only produced low-density foam that started forming after approximately one 

third of the chamber length. It is believed that the front far left inlet was partially blocked by 

the deflector while the one on the far right was not. This is believed to have caused the 

uneven growth seen within the chamber.  

Experiment values: 

• Initial palladium weight: 0.5 grams 
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• Final foam weight: 10.75 grams 

• Foam surface area: 30.37 m2/g  

 
Figure 31.  Image taken of the results from Foil Deflector ONE’s experiment 

after the main chamber was opened. 

SEM and BSE images confirmed the consistent production of good CFF fiber 

being generated within the chamber (Figure 32). The physical characteristics of the foam 

fiber continue to mimic those of the successful, non-scaled preliminary experimental 

foam fiber having a diameter distribution spanning 16–40 nm.  

 
Figure 32.  Left image shows an SEM image taken of the foam from Foil 

Deflector ONE’s experiment. Right image is a BSE image taken of 
the same experimental results.  
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5. CFF Experiment: Foil Deflector TWO 

Foam grown using Foil Deflector TWO filled the chamber with CFF of varying 

texture quality as shown in Figure 33. The forward chamber section’s foam was nearly 

void of cavities and appeared consistent along the width of the chamber. Along the side 

regions, the foam was also of good texture quality. This good quality foam extended from 

the forward and side interior walls toward the center approximately one inch. Both the 

forward and side sections bonded together to form a solid piece of foam. The center 

region within the chamber, between the gap in the deflector’s top section and the interior 

walls, produced foam of low quality texture. The foam had poor bonds to the front and 

side regions and crumbled easily with the application of a small force. The strength of the 

foam felt low compared to that of the front and side sections. The foam compressed 

easily, without significant resistance. The foam that generated directly beneath the gap in 

the deflector’s top section was of lower texture quality than the front and side regions but 

higher than that of the foam in the center regions. This led to the decision to increase the 

open areas present in the deflector to allow additional precursor gases to reach the poorer 

foam producing regions. It was approximated that 60% of the main chamber was filled 

with foam of the desired texture quality. 

Experiment values: 
• Initial palladium weight: 0.51 grams 

• Final foam weight: 12.419 grams 

• Foam surface area: 111.35 m2/g 
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Figure 33.  Left image shows Foil Deflector TWO’s experiment after opening of 

the main chamber. Right shows the main chamber after the removal 
of Foil Deflector TWO. 

SEM and BSE results continued to show the fiber being generated being of 

similar characteristic and quality as those created in the preliminary CFF experiment 

(Figure 34). The fiber size distribution ranged from approximately 16–40 nm. 

 
Figure 34.  Left image shows an SEM image taken of the foam from Foil 

Deflector TWO’s experiment. Right image is a BSE image taken of 
the same experimental results.  

6. CFF Experiment: Foil Deflector THREE 

Foil Deflector THREE’s experiment increased the experimental run time from 5 

to 10 hours. This was done to increase the time available for the CFF fibers to grow and 

observe how a change in this variable impacted the foam being generated. Modifications 

were also made to the deflector. The results from increasing the open area in the deflector 
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were mostly positive. The forward foam producing regions remained relatively constant 

compared to the previous experimental results. The side regions again produced good 

quality foam the length of the chamber. The solid, interwoven section of foam that was 

generated, grew in width from the front and side interior sidewalls toward the center 

approximately one and a half inch. The center rear region of the main mold chamber 

continued to generate more of the low density, poor cohesion CFF (Figure 35). This low 

quality foam appeared to nucleate but never becomes fully interwoven with the 

surrounding CFF material. The additional experiment time did not appear to significantly 

improve the foam generation. This supports the assumption that precursor flow control is 

of greater significance in the growth process.  

Experiment values: 
• Initial palladium weight: 0.5078 grams 

• Final foam weight: 21.28 grams 

• Foam surface area: 122 m2/g  

 

 
Figure 35.  Left image shows Foil Deflector THREE’s experiment after opening 

of the main. Right image shows the CFF generated during the 
process. 

SEM images verify that the perceived higher quality regions of foam being 

generated are of comparable physical properties of the early production foams we are 
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attempting to reproduce in scaled quantities having a fiber diameter size distribution 

between 8–24 nm (Figure 36).  

 
Figure 36.  SEM image taken from sample 103014. 

7. CFF Experiment: Foil Deflector FOUR 

Foil Deflector FOUR’s experiment utilized the addition of Tungsten Oxide 

(WO3) power (0.0626 grams) combined with the palladium catalyst. TheWO3 addition 

aimed to increase the CFF’s material strength as was done in other related experimental 

studies [31]. The experiment was again allowed to run for 10 hours to increase the time 

available for CFF growth. Changes made to the deflector dimensions increased the 

forward gap to allow additional flow to enter the front of the main chamber. Changes 

were also made to the deflectors cover to decrease the open area in the rear center of the 

cover. The combination of the changes had an overall poor effect on the foam that was 

generated (Figure 37). The foam’s texture in the forward and side regions, which had 

previously been of good quality, no longer felt elastic. The foam generated was now 

brittle and stiff. The foam in the center rear region was also flaky. Of positive note, the 

size of the center rear region of foam that did not combine into the single solid foam of 

the front and side regions decreased slightly from the previous experiment, increasing the 

overall size of the single solid foam piece.  

Analysis of the experiments SEM images revealed that the addition of tungsten 

oxide powder had an observable impact on the foam’s fiber diameter (Figure 38). The 



 43 

tungsten oxide had the effect of decreasing the individual fibers diameter distribution as 

observed in Figure 39. The tungsten oxide’s negative impact to the foams texture and 

elasticity preclude its future use in this thesis’s future experiments, as precursor of WS2. 

Future efforts will include this secondary phase, a known shock absorber [3, 31]. 

Experiment values: 
• Initial palladium weight: 0.5012 grams 

• Tungsten Oxide weight: 0.0626 grams 

• Final foam weight: 21.28 grams 

• Foam surface area: 122.13 m2/g  

 
Figure 37.  Left image shows Foil Deflector FOUR’s experiment after opening 

of the main chamber. Right image shows the removed CFF block 
after removal from the main chamber.  

 
Figure 38.  Left image shows an SEM image taken of the foam from Foil 

Deflector FOUR’s experiment. Right image is a BSE image taken of 
the same experimental results.  
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Figure 39.  Smaller fiber diameters observed due to the inclusion of tungsten 

oxide. 

8. CFF Experiment: Foil Deflector FIVE 

Foil Deflector FIVE’s experiment returned to deflector three’s dimensions with 

only minor modifications made to the rear center gap section. The gap was decreased in 

size utilizing a cover. This cover created two parallel 1/4 x 1-inch slits and decreased the 

amount of open area in the cover’s rear center region (Figure 40). This experiment was 

run for 5 hours. After cooling, flow direction was reversed by switching the gas inlet and 

outlet lines and the experiment resumed for the additional 5 hours. This was done to 

provide the rear section of chamber fresh, unspoiled gas flows. The premise for this 

action was that the palladium remaining in the rear chamber would then grow similarly to 

that of the palladium within the front of the chamber. Opening the chamber revealed that 

the rear center region despite the directional change continued to produce the poor 

bonding, low texture quality foam. It was observed that the CFF that formed in the rear 

sections began to cover the outer chamber gas outlets. The closure of these outer gas 

outlets forces the exhaust gases to flow entirely through the remaining center gas outlets. 
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This exhaust is believed to be enough to stop the CFF generation process. It is now 

believed once individual nucleation of the foam generation process is interrupted, there 

seems to be no recovering likely due to the formation of carbon caps, which form over 

the palladium catalyst. This conclusion is based on the observation of providing the 

remaining palladium in the rear of the chamber with the same gas flows as the beginning 

of the experiment and continuing to see the poor foam unchanged despite the new 

direction of gas flow.  

Experiment values: 
• Initial palladium weight: 0.5037 grams 

• Final foam weight: 26.86 grams 

• Foam surface area: 94.58 m2/g 

 
Figure 40.  Left image shows Foil Deflector FIVE’s experiment after opening of 

the main chamber. Right image shows the removed foam block after 
removal from the main chamber.  

SEM and BSE images (Figure 41) shows consistent good foam characteristics are 
being produced in the regions where good foam texture is observed.    
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Figure 41.  Left image shows an SEM image taken of the foam from Foil 

Deflector FIVE’s experiment. Right image is a BSE image taken of 
the same experimental results.  

9. CFF Experiment: Foil Deflector SIX 

A rear stainless steel deflector was used in addition to the deflector set up from 

Foil Deflector FIVE’s experiment (Figure 43). The new rear deflector addition is held in 

place using the rear prongs that hold the foam base in place during the experiment. The 

additional deflector was added to prevent the gas outlets from being clogged with newly 

generated CFF, which then could change gas flows and possibly cause exhaust gases to 

become condensed in the main chamber. The experiment ran continuously for 10 hours 

without changes in the gas flow direction.  

The foam generated in Foil Deflector SIX’s experiment formed a solid 

interwoven foam block (Figure 44). The addition of the rear deflector permitted the 

generation of the good quality textured CFF to form in all regions, including the center 

rear region of the main chamber. All regions of the chamber were interwoven, which 

allowed for the removal of the block as a single unit (Figure 45). Despite the appearance 

of minor CFF nucleation clusters that formed atop the interwoven mat below, the 

experiment was determined to have met the objectives set forth in the thesis.  

SEM images taken from a sample of the CFF show the size characteristics of the 

CFF fibers closely match those obtained from the preliminary experiments (Figure 46). 

This is important because it indicates that despite the increased scale of the generated 

foam, the foam fibers produced continue to have the same desired physical characteristics 
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as those produced in the earlier preliminary experiments. A table summarizing all 

experimental variables and results are provided in Table 2.  

Additional ANSYS modeling was conducted to show the new precursor flow 

paths within the chamber due to the addition of Foil Deflector SIX. As shown in Figure 

42 the flow paths travel around the deflector creating several additional fresh flow 

sources that now reach all regions of the chamber. As CFF generation occurs, it will start 

to obstruct lower flow paths shown within the forward region of the model, these lower 

flow paths will begin to slow due to the newly formed nanofoam obstructions. Precursor 

flows will redistribute to other unobstructed pathways. These other pathways provide 

continuous precursor flow to all regions of the chamber.  

 
Figure 42.  ANSYS modeling of the mold chamber utilizing Foil Deflector SIX 

shows the modified flow paths within the chamber. 

Experiment values: 
• Initial palladium weight: 0.5064 grams 

• Final foam weight: 19.69 grams 

• Foam surface area: 58.52 m2/g 
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Figure 43.  Left image shows the completely disassembled Deflector SIX from 

the experiment. Right image shows a rear view of the assembled 
deflector.  

 
Figure 44.  Image shows Foil Deflector SIX experiment growth after opening of 

the main chamber.  

 
Figure 45.  Left image shows a forward view of the CFF block generated during 

Foil Deflector SIX’s experiment and placed atop the main chamber 
after removal. Right image shows a rear view of the results.  
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Figure 46.  SEM and BSE images taken from a sample of the CFF block 

generated in Foil Deflector SIX’s experiment.  

Table 2.   Summary of all experimental variables. 

N2 O2 C2H4 Time
1 082514 N/A (Pd).0.68.g 100 15 15 5.hr 42.2 33 16.02
2 090314 Rod.Deflector.ONE (Pd).0.5.g 300 45 45 5.hr 163.2 50 19.12
3 092414 Foil.Deflector.ONE (Pd).0.5.g 300 45 45 5.hr 30.37 55 10.75
4 093014 Foil.Deflector.TWO (Pd).0.51.g 300 45 45 5.hr 11.53 60 12.419
5 100314 Foil.Deflector.THREE (Pd).0.5078.g 300 45 45 10.hr 122 75 21.28

6 100914 Foil.Deflector.FOUR (Pd).0.5012.g....
(WO3).0.0626.g

300 45 45 10.hr 122.13 60 20.54

7 102114 Foil.Deflector.FIVE (Pd).0.5037.g 300 45 45 10.hr.+.5.hr 94.58 85 26.86
8 103114 Foil.Deflector.SIX (Pd).0.5064.g 300 45 45 10.hr 58.52 100 19.69

Surface1Area1
(m^2/g1)

Percent1of1
chamber1filled1(%)

Final1foam1
weight1(g)

Experimental1results
Gas1Flow1(SCCM)Experiment1

#
Name Deflector Catalyst1weight

Experimental1variables

 
 

The analysis of the surface area values in Table 2 show that the samples that 

nearly or completely filled the mold have intermediate values (in the order of 50–100 

m2/g). These results can be explained, in one hand, by the fact that carbon nanostructures 

with higher surface areas will have more empty space in between fibers, not enough to 

interweave and generate a foam. On the other hand, samples with small surface areas will 

have such a dense structure, that the fibers will lock each other in position and will not 

present the desired mechanical properties. It is worth noting that the relative density of 

the foam that completely filled the mold is 0.245, similar to balsa wood [5]. 
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Figure 47.  Consolidated diameter distribution results from all CFF experiments. 

The consolidated diameter results shown in Figure 47 reveal that the CFF material 

being generated (with the exception of the tungsten oxide Deflector FOUR experiment) 

all had similar bimodal diameter size distributions. Quality control processes can be 

created from this knowledge. Diameter distribution measurements can act as a standard 

that can gauge the quality of the nanofoam being fabricated. The most effective 

experiment, Deflector SIX, which was able to fill the mold, had has an average diameter 

size of 24 nm, with almost no fibers below 15 nm or greater than 32 nm. Larger 

diameters seem to form aggregates rather than foams.  

F. CATALYST RECOVERY: SUMMARY OF FINDINGS  

SEM and BSE images were taken of the samples after having gone through the 

palladium extraction procedure at locations near the outer edge of the surface and at the 

interior of the sample (Figure 48). The BSE images were utilized to distinguish the 

palladium particles from the carbon fibers. These images were then analyzed using the 

software, Image J, to measure particle sizes and compare the particle density remaining in 

the foam after going thru the individual extraction solutions [30]. 
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Figure 48.  BSE images taken of samples after the palladium recovery 

procedure. Left image shows solution 1 sample and right image 
shows solution 2 sample. 

1. Interior region analysis 

Comparing the particle size distribution between the two solutions revealed that 

solution 2, which was comprised of an aqueous solution, hydrochloric acid (10%) and 

peroxide (5%) had the greatest impact at dissolving palladium. Figure 49 shows fewer 

large palladium particles (particles greater than 12 nm diameter) were present in the 

solution 2 sample’s interior region when compared to solution 1 sample’s interior region. 

The solution 2 sample’s interior on the other hand had a significantly greater number of 

smaller particles (particles less than 12 nm diameter) in this region. This is likely due to 

larger particle breaking ups and forming numerous smaller particles that never fully 

dissolve but remained in the CFF sample. 

 
Figure 49.  Palladium catalyst particle size distribution of the interior region of 

sample specimen taken after recovery method procedure. 
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2. Exterior region analysis 

Figure 50 shows the particle distribution of each solutions exterior region. The 

solution 2 sample exterior region contained a greater number of larger particles than the 

solution 1 sample. Both had significantly fewer large particles than were found in the 

interior region. This increase in the number of large particles found in the exterior region 

is likely due to a combination of larger particle breakups and particle migration from the 

interior region. Both exterior sample distributions showed significantly greater numbers 

of smaller palladium particles also likely due to the partially dissolved particles migrating 

out of the foam.  

 
 

Figure 50.  Palladium catalyst particle size distribution of the exterior region of 
sample specimen taken after recovery method procedure. 

The spent catalyst recovery experiment demonstrated a successful process that 

could be used as a method to recover the valuable palladium used in the CFF generation. 

It also shows that the addition of the peroxide resulted in greater disillusion of the 

palladium. Additional time as well as an increase in the amount of solution would likely 

improve the results obtained further.  
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IV. CONCLUSION  

The primary goal of this research was to show that the CFF production process 

could be scaled in order to fabricate mechanically robust, homogenous foam samples that 

meet dimensions adequate for further testing. CFF materials have important material 

characteristics, such as significant shock absorption properties, that make this effort 

worthwhile.  

Scale up of the production process required the design and manufacture of a CFF 

chamber. The chamber created for this thesis was capable of facilitating and enabling the 

growth model variable conditions (precursor flow, constrained growth area, temperature, 

and time) necessary to enable the generation of carbon nanofibers. Through the control of 

these variables, a homogenous, interwoven CFF mat was successfully created using the 

catalyst palladium and carbon rich gas ethylene. SEM, BET, and BSE characterization 

techniques were conducted on the scaled experimental samples to confirm that the foams 

created during these experiments were of similar quality as those created during previous 

experimental research.  

Analysis of the CFF growth variables and their impact on the generated foam 

samples showed that precursor flow interaction with the catalyst had a greater impact on 

the foam development than time. This variable was successfully controlled throughout 

the chamber by the utilization of a stainless steel deflector capable of directing sufficient 

precursor gas flows to all chamber regions. This flow rate was sufficient enough to 

prevent the formation of carbon caps, which can encapsulate the palladium catalyst 

particles and cease the growth mechanism by preventing the decomposition of 

hydrocarbon gas. Moreover, the temperature and velocity of the gases were key for 

successful CFF growth. In this study, the use of a serpentine was indispensable to reach 

those optimal conditions.  

ANSYS modeling can be used to simulate initial gas flows and provide guidance 

for deflector design. However, once the fibers start growing, these models are no longer 
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valid since the fibers obstruct and change the initial gas flow paths and drastically change 

the conditions inside the mold.  

Spent catalyst recovery techniques were researched and from this research, an 

experiment was created to extract the palladium from the CFF. This test used acidic 

solutions to dissolve the spent catalyst without damaging the CFF material. BSE image 

analysis showed the successful disillusion of the palladium catalyst from within the CFF. 

This successful experiment validated the technique as a viable way to reduce costs of 

CFF fabrication by recovering the spent catalyst for reutilization.  

Overall, this research has successfully demonstrated the CoFFiN fabrication 

method’s scalability for the bulk generation of carbon nanofiber foam mats, validating 

the hypothesis presented in Chapter I.  
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APPENDIX 

!

 

 
Figure 51.  SOLIDWORKS renderings of the new mold chamber design.  
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